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Abstract

The use of object detection methods in x-ray security inspec-
tion can significantly reduces the consumption of human re-
sources. However, the current mainstream object detection
methods are aimed at the detection of natural objects, and
the effect of these methods is often unsatisfactory for x-ray
security inspection images that contain extremely serious oc-
clusion. In x-ray images, humans generally use the edges of
the images for item recognition. Inspired by this idea, we de-
signed a object detector specifically for x-ray security inspec-
tion, which is based on the most advanced methods such as
RetinaNet and an edge enhancement module that makes good
use of the edge information in the pictures. The final exper-
iment results show that the developed object detector dedi-
cated to x-ray security inspection has good performance and
excellent generalization.

Introduction
With the vigorous development of modern public transporta-
tion, security inspection has become more and more crit-
ical in protecting public safety. As an effective preventive
measure for terrorist attacks and crimes worldwide, X-ray
scanners usually are adopted by security inspection to find
whether there is any prohibited item in passenger luggage.
However, With both increased passenger throughput in the
global travel network and an increasing focus on broader as-
pects of comprehensive border security (e.g. freight, postal),
more and more inspectors are struggling to find prohibited
items hidden in cluttered luggage. Therefore, a system that
can automatically detect prohibited items in x-ray pictures is
very useful, and it can relieve many security inspectors from
the tedious task.

As the technology of deep learning and computer vi-
sion technologies (Sermanet et al. 2014; Liu et al. 2016;
Tian et al. 2019; Ji et al. 2019b; 2019a; Li et al. 2020;
Cai et al. 2019) develops, the recognition of occluded pro-
hibited items from X-ray images can be regarded as an ob-
ject detection problem of computer vision, which has been
widely studied in the literature. However, compared with
natural images, X-ray images (as Fig.1 ) has a quite differ-
ent appearance and edges of objects and background. Most
previous object detection algorithms in computer vision are
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designed to detect objects in natural images, which are not
optimal for detection in X-ray images. In addition, the im-
ages of the objects stacked in the baggage often occlude with
each other. Unlike the occlusion problem in optical images,
occluded objects are still visible in the X-ray security im-
ages. Due to the occlusion of the images, the detection of the
occluded object is disturbed. Therefore, directly applying
methods designed for natural images will lead to decreased
performance.

Figure 1: Samples of the five categories of cutters and corre-
sponding X-ray images

In view of these characteristics of X-ray images, re-
searchers have conducted in-depth exploration. (Akcay and
Breckon 2020) used image augments to remove noisy and
fuzzy images and evaluated the performance of CNN and
Autoencoder. (AYDIN, KARAKOSE, and AKIN 2018; Cui
and Oztan 2019; Liang et al. 2018; Dhiraj and Jain 2019)
evaluated the performance of CNN, RetinaNet and other
deep learning methods on X-ray images.

What’ more, attention mechanism has been used in ob-
ject detection in recent year. The essence of attention mecha-
nism is to imitate human visual attention, which can quickly
focus on useful information in a large amount of infor-
mation.Previous works(Lim et al. 2021; Peng et al. 2021;
Liu et al. 2022) show that attention mechanism can improve
the performance of object detection model. Swim trans-
former is used in our work to introduce attention mecha-
nism, and the details will be presented in later chapters.



In this project, we aim to complete the task of detecting
prohibited items in X-ray images. To alleviate the occlusion
problem, we propose an edge enhancement module based on
RetinaNet(Lin et al. 2020), which can improve the model’s
performance. Moreover, we use technologies such as data
enhancement to achieve higher accuracy. More details can
be found in the ”Plan” section.

Related Work
X-ray Image Datasets
X-rays have strong penetrating power, making occluded ob-
jects visible in the image, so they are widely used in secu-
rity inspections. Many datasets for object detection in X-ray
security images appear in many papers. The X-ray dataset
(GDX-ray)(Mery et al. 2015) contains multi-view images,
typically used for classification tasks. The luggage group
is the data required for object detection in X-ray security
images. The dataset contains 8150 X-ray photographs, ar-
ranged as 77 series. X-ray images are taken from containers
such as backpacks, pencil cases, wallets, etc. Security X-ray
(SIXray)(Miao et al. 2019) is used to study the class imbal-
ance problem. In total, SIXray contains 1,059,231 X-ray im-
ages, of which 8,929 are labelled. The images were collected
from several subway stations, with raw metadata indicating
the presence or absence of prohibited items. There are six
everyday prohibited items: guns, knives, wrenches, pliers,
scissors, and hammers. Occlusion of Prohibited Items X-ray
(OPIXray)(Wei et al. 2020) is the first high-quality object
detection dataset for security inspection. OPIXray contains
a total of 8885 x-ray images of 5 types of knives: folding
knives, straight knives, scissors, utility knives, and multi-
tool knives. The security inspection machine scans the back-
grounds of all samples, and the prohibited items are synthe-
sized into these backgrounds by professional software.

Objection Detection
Object detection is one of the fundamental tasks in the
field of computer vision, and the sliding window mode,
in which classifiers are applied to dense grids of images,
has a long and rich history. DPMs(Felzenszwalb, Girshick,
and McAllester 2010) help to extend dense detectors to
more general object classes and have achieved state-of-the-
art results for many years on PASCAL. While sliding win-
dow methods were the leading detection paradigm in clas-
sical computer vision, with the renaissance of deep learn-
ing(Fu et al. 2017), the two-stage detectors described next
quickly dominated object detection. The dominant paradigm
of modern object detection is based on a two-stage approach.
As pioneered in selective search work(Redmon et al. 2016),
the first stage generates a sparse set of candidate propos-
als that should contain all objects while filtering out most
negative locations, and the second stage classifies proposals
into foreground classes or backgrounds. R-CNN(Redmon
and Farhadi 2017) upgraded the second stage classifier to a
convolutional network, yielding considerable gains in accu-
racy and ushering in the modern era of object detection. The
Region Proposal Network (RPN) integrates proposal gener-
ation with a second-stage classifier into a single convolu-

tional network, resulting in a faster RCNN framework(Ev-
eringham et al. 2009). OverFeat(Krizhevsky, Sutskever, and
Hinton 2012) is one of the first modern single-stage object
detectors based on deep networks. Subsequently, SSD(Ui-
jlings et al. 2013; Girshick et al. 2014) and YOLO(Ren et
al. 2015) revived interest in one-stage methods. These de-
tectors have been tuned for speed, but their accuracy lags
behind two-stage methods. These detectors have been tuned
for speed, but their accuracy lags behind two-stage methods.
SSDs have 10-20% lower AP, while YOLO focuses on more
extreme speed/accuracy tradeoffs.

Attention Mechanism
The attention mechanism has been widely used in various
tasks in recent years. The essence of the attention mecha-
nism is to imitate human visual attention, which can quickly
filter out discriminative information from a large amount of
information. Various attention mechanisms have been pro-
posed. SENet(Hu et al. 2020) proposes squeeze and excita-
tion modules to model the interdependencies between chan-
nels. CBAM(Woo et al. 2018) models the inter-channel and
inter-spatial relationships of features. The Non-Local net-
work(Wang et al. 2018) can directly capture the long-range
dependencies of any two locations, computing the weighted
sum of the features of all locations in the input feature
map as the response of a location. Since many previous
works(Lin et al. 2017; Liu et al. 2018) have shown the im-
portance of multi-scale feature fusion, we consider it an es-
sential technique for solving the problem of prohibited item
detection. In X-ray images, many vital details of objects are
lost, such as texture and appearance information. Moreover,
the contours of objects overlap, which also brings great chal-
lenges to detection. Therefore, we propose a selective dense
attention network.

Method
Overall Architecture
In this paper, to alleviate the occlusion problem due to the
penetration effect in x-ray images, we improve on Reti-
naNet by proposing an edge enhancement module that uses
an edge detection operator to extract edge information from
the original image and uses this information to extend the
original image from 3 channels to more channels. We also
use a variety of solid data enhancement approaches and in-
corporate methods such as Swin Transformer(Bochkovskiy,
Wang, and Liao 2020) into our network. In the process of
data enhancement, in addition to conventional methods such
as resizing, we also incorporate data enhancement meth-
ods such as mosaic(Bochkovskiy, Wang, and Liao 2020),
mixup(Zhang et al. 2018), and copy-paste(Ghiasi et al.
2021); in the process of feature extraction, we use the current
best Transformer-based backbone, called Swin Transformer,
and use nasfpn(Ghiasi et al. 2019) as the neck for feature fu-
sion and enhancement; in the final prediction head, we bor-
row the idea of yolox(Ge et al. 2021), use decoupled pre-
diction head and design three branches for prediction. Fig.2
show the overall structure of the model network.



Figure 2: Overall architecture of the model network

Data Augmentation
Mosaic This data enhancement method takes four images
and stitches them together by random scaling, cropping, and
lining up. It enriches the background and small targets of the
detected objects. When calculating Batch Normalization, it
calculates the data of four images at a time so that the mini-
batch size does not need to be significant, and a GPU can
achieve better results.

Mixup MixUp data enhancement is a pixel-by-pixel over-
lay of two images in random proportions and then integrates
the labels of the subgraphs together as the labels of the
mixed images.

CopyPaste CopyPaste is similar to MixUp but copies only
the pixels of the instance, not all the pixels in the instance’s
detection frame. First, two images are randomly selected,
each with random scale dithering, and then some instances
are randomly selected from one image and directly pasted to
the other image while updating the detection frame, category
labels and masks.

Edge Enhancement Module
Since the occlusion in x-ray images is very serious, we gen-
erally recognize them by edges. Therefore, this paper pro-
poses an edge enhancement module for extracting the edges
in x-ray images, as illustrated in Fig.3.

The edge enhancement module uses various operators,
such as the Sobel operator, Roberts operator, Prewitt oper-
ator, etc., for edge extraction, and all the operators can be
selected in terms of type and number. When the required
operators are selected, the original image is extracted using

Figure 3: Edge enhancement module

these operators to obtain the extracted edge map. Then all
the edge maps are concatenated with the original image to
obtain the enhanced original image. The number of channels
depends on the number of edge detection operators used.

In addition, this paper also designs a separate feature ex-
traction network for the edge detection map, which uses
Swin Transformer to obtain the edge feature map, and con-
catenate the edge feature map with the original feature map
before the backbone is input to the neck and then the hybrid
feature map is input to the neck to continue the feature fu-
sion and then the hybrid feature map is input to the neck for
feature fusion and enhancement.

Feature Extraction
Feature extraction consists of the backbone and neck. The
backbone is mainly used for initial feature extraction, while
the neck is primarily used for feature fusion and enhance-
ment, which can fuse the spatial information in the bottom
layer of the backbone with the rich semantic information in
the top layer to obtain a more effective feature map.

Our backbone uses Swin Transformer, as illustrated in
Fig.4, which is a new feature extraction network based on



Transformer. Swin Transformer uses the idea of sliding win-
dows to compute self-attention in the local range, which can
effectively reduce the number of parameters in the back-
bone. The whole Swin Transformer contains four stages.
When an image of size 448*448 is input into Swin Trans-
former, it will pass through each stage in turn to produce
feature map outputs C2, C3, C4 and C5 with a gradually in-
creasing number of channels and decreasing resolution.

Figure 4: The backbone of the network is Swin Transformer

After obtaining the four feature maps from the backbone,
we input them into NAS-FPN for feature fusion and en-
hancement, which uses network structure search to select the
best model structure in the search space using augmentation
learning. It receives C2, C3, C4, and C5 as input and ob-
tains C6 by performing a maximum pooling operation with
a stride of 2 on C5, and inputs the five feature maps into
NAS-FPN to obtain the feature maps P2, P3, P4, P5, and P6
after feature fusion.

Decoupled Head
After the feature extraction, we input the feature maps into
the prediction head. All prediction heads share the same pa-
rameters and use a decoupled head with three branches: clas-
sification branch, regression branch and Centerness branch,
as illustrated in Fig.5. Each prediction head contains four
stacked convolutional layers, and after the operation of the
feature map, we output the feature maps with channel sizes
C, 4, and 1, which correspond to the classification branch,
regression branch, and Centerness branch, where C indicates
the number of categories in the dataset, 4 indicates the four
coordinates of the bounding box, and one is used to distin-
guish between foreground and background.

Loss
There are three major losses used in the network, which are
classification loss, regression loss and Centerness loss.

Classification Loss There are two reasons for choosing
focal loss: first, when assigning positive and negative sam-
ples, the number of negative samples is too large and will
occupy most of the loss, and many of these negative samples
are simple samples, which makes the model optimization di-
rection not as we hope, and focal loss by reducing the weight
of easy to classify; Second, since some classes occupy the
majority of the dataset and some classes are very small in
number, this also makes the model tend to give the classi-
fication to the class with the large number during training,

Figure 5: Decoupled head consists of three branches, classi-
fication branch, regression branch and Centerness branch

and the multi-classification version of focal loss can solve
this problem well. Focal Loss formula is shown in Eqa.1.
(1 − pt) is the modulation factor, α and γ are the hyperpa-
rameter to control the modulation factor, it means that when
the network has greater confidence in the prediction result,
its proportion in the loss is smaller, it allows the network to
focus on learning more difficult samples.

ClassLoss = FL(pt) = −αt(1− pt)
γ log(pt) (1)

Regression Loss The regression loss uses giou loss
(Rezatofighi et al. 2019). The main reason for choosing giou
loss is that when the traditional iou is used as the loss func-
tion, if the two boxes do not intersect, then iou = 0, and this
time, because the loss is also 0, the gradient cannot be back
propagated and cannot learn the training. In contrast, giou
takes into account the proportion of the region that does not
belong to the two boxes in the closed region to the whole
closed region so that it can solve the above problem well.
GIoU Loss formula is shown in Eqa.2 and Eqa.3. a and b are
the ground truth box and prediction box, c is the smallest
enclosing rectangle covering a and b.

GIoU = IoU − areac − areaa∪b

areac
(2)

RegLoss = LGIoU = 1−GIoU (3)

Centerness Loss The final Centerness loss uses the cross-
entropy loss function, which is consistent with that in
FCOS. Our Centerness branch is independent of the other
two branches, and in our tests we found no difference be-
tween the effect of the Centerness branch and the other two
branches together and not together, with the following for-
mula Eqa.4 for Centerness.

Centerness =

√
min(l × r)

max(l × r)
× min(t, b)

max(t, b)
(4)

where l, r, t, b denote the distance from the center point of
bounding box to each side of this bounding box. The final



Table 1: The category distribution of the OPIXray dataset.
Due to that some images contain more than one prohibited
item, the sum of all items in the different categories is
greater than the total number of images.

OPIXray Categories TotalFolding Straight Scissor Utility Multi-tool
Training 1589 809 1494 1635 1612 7109
Testing 404 235 369 343 430 1776
Total 1993 1044 1863 1978 2042 8885

Centerness value is optimized by BCELoss, which has the
following formula illustrated by Eqa.5

CenterLoss = −C×log(C∗)−(1−C)×log(1−C∗) (5)

where C denotes the true value of Centerness and C∗ de-
notes the Centerness calculated from the bounding box.

Total Loss Through the weighted combination of the
above methods,we show the total loss in Eqa.6

L = ClassLoss+WR×RegLoss+WC×CenterLoss (6)

where ClassLoss, RegLoss, CenterLoss denote the loss of
classification, regression and Centerness, and WR,WC de-
note the weights of regression loss and Centerness loss.

Experiments
In this section, we prepare some experiments to validate our
model. The OPIXray dataset is used for the experiments, and
the details of the dataset will be described below. We also de-
signed experiments to verify the superiority of the proposed
method over the baseline to demonstrate the effectiveness of
the method in this paper. Finally, we also designed ablation
experiments to demonstrate that all the modules designed in
this paper are valid.

Dataset
All images of OPIXray dataset are scanned by security in-
spection machine and annotated manually by professional
inspectors from an international airport, and the standard of
annotating is based on the standard of training security in-
spectors. And OPIXray dataset contains a total of 8885 X-
ray images(7019 for training, 1776 for testing), including 5
categories of cutters, namely, Folding Knife, Straight Knife,
Scissor, Utility Knife, Multi-tool Knife. In order to study the
impact brought by object occlusion levels, it divide the test-
ing set into three subsets and name them Occlusion Level
1 (OL1), Occlusion Level 2 (OL2) and Occlusion Level 3
(OL3), where the number indicates occlusion level of pro-
hibited items in images. Examples of graphs for datasets of
different difficulty levels are shown in Fig.6. The number of
categories and the total number for this dataset are shown
in Tab.1. The information structure of annotation file is as
follows: image name, category, top-left position of prohib-
ited item (x1, y1), bottom-right position of prohibited item
(x2, y2). You can check some examples in OPIXray in Fig.1.

Figure 6: Samples of different occlusion levels

Experimental Details
In all our experiments, the model was optimized using the
SDG optimizer, with the learning rate set to 0.0025, the
batch size set to 4, the momentum set to 0.9, and the weight
decay set to 0.0001. A total of 70 training rounds were
eventually performed. The graphics card was an NVIDIA
GTX 3090 with 24 GB of video memory. mAP, mean Aver-
age Precision, was used to evaluate the performance of the
model and the IoU threshold was set to 0.5.

Comparing with Other Models
We compared some of the more commonly used classical
target detectors with our proposed method, and the spe-
cific results can be viewed in Tab.2. From this experimen-
tal result, we can see that our model improves the perfor-
mance over SSD, YOLOv3 and FCOS by 15.68%, 8.36%
and 4.55%, respectively. It can also be seen that in the class-
by-class results, our proposed method gets the best results
in the Folding, Straight, Scissor, and Utility classes, and im-
proves 2.35%, 0.76%, 0.88%, and 3.94% over the second
place method, respectively, which makes the overall perfor-
mance of our method compared to the second place method,
which is FCOS was able to have an improvement of 4.55%.
And we also notice that on the Multi-tool class, our method
is 6.17% lower than the highest performing method with
94.37%. We guess that the shape of the Multi-tool class is
more similar to many other objects, and after using the edge
enhancement module, more shapes similar to this class may
be generated, leading to many false positives from the detec-
tor, which in turn leads to degradation of its performance.

Visualization
In this section, we visualize some of the detection results
of the detector in Fig.7. Each of these columns represents
different kinds of results, and each row represents results of
different difficulties, for a total of three difficulties.



Figure 7: Visualization
Folding Knife Straight Knife Scissor Utility Knife Multi-tool Knife

OL1

OL2

OL3

Table 2: Performance comparison between some famous
detectors. FO, ST, SC, UT and MU represent Folding Knife,
Straight Knife, Scissor, Utility Knife and Multi-tool Knife,
respectively.

Method mAP Category
FO ST SC UT MU

SSD 70.89 76.91 35.02 93.41 65.87 83.27
YOLOv3 78.21 92.53 36.02 97.34 70.81 94.37

FCOS 82.02 86.41 68.47 90.22 78.39 86.60
Ours 86.57 94.88 69.23 98.22 82.33 88.20

Conclusion
In this paper, we investigate the task of using target detec-
tion in x-ray security screening to assist in hazardous mate-
rials detection. Our proposed method is able to adapt to haz-
ardous materials detection in many different x-ray scenarios,
and in particular, our proposed edge enhancement module is
well suited to edge enhancement for problems such as miss-
ing textures in x-ray images, thus allowing the detector to
perform better classification and localization based on edge
features. Our experiments also finally and fully demonstrate
the validation of the proposed method in this paper.
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